Técnicas de vanguardia

Cone Beam CT Scanner

Dental cone beam computed tomography (CT) is a special type of x-ray machine used in situations where regular dental or facial x-rays are not sufficient. This type of CT scanner uses a special type of technology to generate three dimensional (3-D) images of dental structures, soft tissues, nerve paths and bone in the craniofacial region in a single scan. Images obtained with cone beam CT allow for more precise treatment planning.

You should wear comfortable, loose-fitting clothing to your exam. You may be given a gown to wear during the procedure.

Metal objects, including jewelry, eyeglasses, dentures and hairpins, may affect the CT images and should be left at home or removed prior to your exam. You may also be asked to remove hearing aids and removable dental work. Women will be asked to remove bras containing metal underwire. You may be asked to remove any piercings, if possible.

Cone beam CT is not the same as conventional CT. sin embargo, dental cone beam CT can be used to produce images that are similar to those produced by conventional CT imaging.

With cone beam CT, an x-ray beam in the shape of a cone is moved around the patient to produce a large number of images, also called views. CT scans and cone beam CT both produce high-quality images.

Dental cone beam CT was developed as a means of producing similar types of images but with a much smaller and less expensive machine that could be placed in an outpatient office.

Cone beam CT provides detailed images of the bone and is performed to evaluate diseases of the jaw, dentition, bony structures of the face, nasal cavity and sinuses. It does not provide the full diagnostic information available with conventional CT, particularly in evaluation of soft tissue structures such as muscles, lymph nodes, glands and nerves. sin embargo, cone beam CT has the advantage of lower radiation exposure compared to conventional CT.

common uses of the Cone Beam CT ScannEr

Dental cone beam CT is commonly used for treatment planning of orthodontic issues. It is also useful for more complex cases that involve:

  • surgical planning for impacted dientes.
  • diagnosing temporomandibular joint disorder (ATM).
  • accurate placement of dental implants.
  • evaluation of the jaw, sinuses, nerve canals and nasal cavity.
  • detecting, measuring and treating jaw tumors.
  • determining bone structure and tooth orientation.
  • locating the origin of pain or pathology.
  • reconstructive surgery.

*information pulled from Radiologyinfo.org

CBCT guided jaw surgery

CT Scan Guided Surgery involves the use of three dimensional CT imaging to better visualize the patient’s bone without having to surgically expose the area.

Based upon the findings of the CT Scan, a treatment plan of the implant operation is made using specialized computer software on the CT Scan. This information is then transferred to a computer generated surgical template which guides the implant instrumentation exactly to the desired location in such a way that it matches the treatment plan and turns it into reality.

The procedure starts by having the dentist fabricate a radiographic guide which is essentially a set up of the patient’s ideal teeth in acrylic. If the patient’s denture has the teeth in their ideal position, the denture may be used as the radiographic guide. A CT scan of the patient’s bone as well as the radiographic guide are then performed. This CT scan allows for the generation of a three-dimensional model of the jawbone and the proposed teeth that can then be used in virtual reality software to plan the implant placement. Once the implant positions and sizes are determined and planned, the software then generates a special guide from this planning that may be used for 2 purposes: 1) to perform the surgery in a minimally invasive fashion 2) to fabricate the fixed teeth that are placed on the implants right after the surgery

Guided surgery provides a link between the surgeon’s plan and the actual surgery. It also has several important enhancements and advantages over conventional surgeries. First, the patient and the surgeon are better prepared for what they will encounter during the procedure. Complete information about the quality and quantity of the bone makes it possible to determine the ideal location for the implants that enhances the final esthetic outcome, while also avoiding important anatomy in the area. This translates into less complications and surgery time is often decreased. Because many surprises are eliminated by the enhanced treatment planning, treatment costs are also more predictable.

CO2 laser

The advantages of the CO2 Laser is relatively bloodless surgery; decreased postoperative discomfort; minimal swelling and scarring; and the laser’s ability to coagulate, vaporize, or cut. The CO2 surgical laser offers the dental surgeon a viable and in many cases an improved alternative to the scalpel. We typically use the CO2 laser for Frenectomies, papilloma removal, and gingivectomies.

Guided Implant Placement

Horizontal & Vertical Ridge Augmentation

Platelet-rich plasma (PRP)

Platelet-rich plasma (PRP) is a new approach to tissue regeneration and it is becoming a valuable adjunct to promote healing in many procedures in dental and oral surgery, especially in aging patients. PRP derives from the centrifugation of the patient’s own blood and it contains growth factors that influence wound healing, thereby playing an important role in tissue repairing mechanisms. The use of PRP in surgical practice could have beneficial outcomes, reducing bleeding and enhancing soft tissue healing and bone regeneration. Studies conducted on humans have yielded promising results regarding the application of PRP to many dental and oral surgical procedures (i.e. tooth extractions and implant surgery). The use of PRP has also been proposed in the management of bisphosphonate-related osteonecrosis of the jaw (BRONJ) with the aim of enhancing wound healing and bone maturation. The aims of this narrative review are: i) to describe the different uses of PRP in dental surgery (tooth extractions and periodontal surgery) and oral surgery (soft tissues and bone tissue surgery, implant surgery and BRONJ surgery); and ii) to discuss its efficacy, efficiency and risk/benefit ratio. This review suggests that the use of PRP in the alveolar socket after tooth extractions is certainly capable of improving soft tissue healing and positively influencing bone regeneration but the latter effect seems to decrease a few days after the extraction. PRP has produced better results in periodontal therapy in association with other materials than when it is used alone. Promising results have also been obtained in implant surgery, when PRP was used in isolation as a coating material. The combination of necrotic bone curettage and PRP application seem to be encouraging for the treatment of refractory BRONJ, as it has proven successful outcomes with minimal invasivity. Since PRP is free from potential risks for patients, not difficult to obtain and use, it can be employed as a valid adjunct in many procedures in oral and dental surgery. sin embargo, further RCTs are required to support this evidence.

Bone morphogenetic protein (BMP)

BMP is an isolated protein that induces specific cells in our body to form new cartilage and bone. During surgery, the BMP is soaked onto and binds with a collagen sponge. The sponge is then designed to resorb, or disappear, over time. As the sponge dissolves, the bone morphogenic protein stimulates the cells to produce new bone. The BMP also goes away once it has completed its task of jump starting the normal bone healing process.

Since there is no need to harvest bone from the patientship for BMP, recipients were spared donor site pain. Complications from the graft harvest site are also eliminated with the use of bone morphogenic protein.

Bone harvesting from the patient tibial, ramus, Symphysis

Piezosurgery

Piezosurgery is a promising, meticulous and soft tissue-sparing system for bone cutting, based on ultrasonic microvibrations. The main advantages of piezosurgery include soft tissue protection, optimal visibility in the surgical field, decreased blood loss, less vibration and noise, increased comfort for the patient and protection of tooth structure. To date it has been indicationed for use in oral and maxillofacial surgery, otorhinolaryngology, neurosurgery, ophthalmology, traumatology and orthopaedics. The main indications in oral surgery are sinus lift, bone graft harvesting, osteogenic distraction, ridge expansion, endodontic surgery, periodontal surgery, inferior alveolar nerve decompression, cyst removal, dental extraction and impacted tooth removal. In conclusion, piezosurgery is a promising technical modality for different aspects of bone surgery with a rapidly increasing number of indications throughout the whole field of surgery.

Information pulled from NCBI