Cutting Edge Techniques

CBCT guided jaw surgery

CT Scan Guided Surgery involves the use of three dimensional CT imaging to better visualize the patient’s bone without having to surgically expose the area.

Based upon the findings of the CT Scan, a treatment plan of the implant operation is made using specialized computer software on the CT Scan.  This information is then transferred to a computer generated surgical template which guides the implant instrumentation exactly to the desired location in such a way that it matches the treatment plan and turns it into reality.

The procedure starts by having the dentist fabricate a radiographic guide which is essentially a set up of the patient’s ideal teeth in acrylic. If the patient’s denture has the teeth in their ideal position, the denture may be used as the radiographic guide. A CT scan of the patient’s bone as well as the radiographic guide are then performed. This CT scan allows for the generation of a three-dimensional model of the jawbone and the proposed teeth that can then be used in virtual reality software to plan the implant placement. Once the implant positions and sizes are determined and planned, the software then generates a special guide from this planning that may be used for 2 purposes: 1) to perform the surgery in a minimally invasive fashion 2) to fabricate the fixed teeth that are placed on the implants right after the surgery

Guided surgery provides a link between the surgeon’s plan and the actual surgery.  It also has several important enhancements and advantages over conventional surgeries.  First, the patient and the surgeon are better prepared for what they will encounter during the procedure.  Complete information about the quality and quantity of the bone makes it possible to determine the ideal location for the implants that enhances the final esthetic outcome, while also avoiding important anatomy in the area.  This translates into less complications and surgery time is often decreased.  Because many surprises are eliminated by the enhanced treatment planning, treatment costs are also more predictable.

Cone Beam CT Scanner

CO2 laser

Guided Implant Placement

Horizontal & Vertical Ridge Augmentation

Platelet-rich plasma (PRP)

Platelet-rich plasma (PRP) is a new approach to tissue regeneration and it is becoming a valuable adjunct to promote healing in many procedures in dental and oral surgery, especially in aging patients. PRP derives from the centrifugation of the patient’s own blood and it contains growth factors that influence wound healing, thereby playing an important role in tissue repairing mechanisms. The use of PRP in surgical practice could have beneficial outcomes, reducing bleeding and enhancing soft tissue healing and bone regeneration. Studies conducted on humans have yielded promising results regarding the application of PRP to many dental and oral surgical procedures (i.e. tooth extractions and implant surgery). The use of PRP has also been proposed in the management of bisphosphonate-related osteonecrosis of the jaw (BRONJ) with the aim of enhancing wound healing and bone maturation. The aims of this narrative review are: i) to describe the different uses of PRP in dental surgery (tooth extractions and periodontal surgery) and oral surgery (soft tissues and bone tissue surgery, implant surgery and BRONJ surgery); and ii) to discuss its efficacy, efficiency and risk/benefit ratio. This review suggests that the use of PRP in the alveolar socket after tooth extractions is certainly capable of improving soft tissue healing and positively influencing bone regeneration but the latter effect seems to decrease a few days after the extraction. PRP has produced better results in periodontal therapy in association with other materials than when it is used alone. Promising results have also been obtained in implant surgery, when PRP was used in isolation as a coating material. The combination of necrotic bone curettage and PRP application seem to be encouraging for the treatment of refractory BRONJ, as it has proven successful outcomes with minimal invasivity. Since PRP is free from potential risks for patients, not difficult to obtain and use, it can be employed as a valid adjunct in many procedures in oral and dental surgery. However, further RCTs are required to support this evidence.

Bone morphogenic protein (BMP)

Bone morphogenic protein (BMP) is an isolated protein that induces specific cells in our body to form new cartilage and bone. During surgery, the BMP is soaked onto and binds with a collagen sponge. The sponge is then designed to resorb, or disappear, over time. As the sponge dissolves, the bone morphogenic protein stimulates the cells to produce new bone. The BMP also goes away once it has completed its task of jump starting the normal bone healing process.

Since there is no need to harvest bone from the patients’ hip for BMP, recipients were spared donor site pain. Complications from the graft harvest site are also eliminated with the use of bone morphogenic protein.

Bone harvesting from the patient tibial, ramus, Symphysis

Piezosurgery

Piezosurgery is a promising, meticulous and soft tissue-sparing system for bone cutting, based on ultrasonic microvibrations. The main advantages of piezosurgery include soft tissue protection, optimal visibility in the surgical field, decreased blood loss, less vibration and noise, increased comfort for the patient and protection of tooth structure. To date it has been indicationed for use in oral and maxillofacial surgery, otorhinolaryngology, neurosurgery, ophthalmology, traumatology and orthopaedics. The main indications in oral surgery are sinus lift, bone graft harvesting, osteogenic distraction, ridge expansion, endodontic surgery, periodontal surgery, inferior alveolar nerve decompression, cyst removal, dental extraction and impacted tooth removal. In conclusion, piezosurgery is a promising technical modality for different aspects of bone surgery with a rapidly increasing number of indications throughout the whole field of surgery.